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Abstract

The population densities of the gypsy moth (Lymantria dispar; Lepidoptera:

Lymantriidae) may reach outbreak levels that pose considerable economic

and environmental impacts to forests in Europe, Asia, Africa and North

America. Compared with the situation in its native European range feed-

ing damage by gypsy moth is often found to be more severe in North

America and other parts of the world. Thus, the release from natural ene-

mies can be interpreted as an important cause for high feeding damages.

Natural enemies, especially parasitoids, can cause delayed density-

dependent mortality, which may be responsible for population cycles. In

North America where only few parasitoids have been introduced and the

parasitism rates are considerably lower than in Europe, generalist predators

play a larger role than in Europe. Many other factors seem to influence

the population dynamics of the gypsy moth such as the host plants and

weather. Nevertheless, much of the variability in population densities of

the gypsy moth may be attributed to interacting effects of weather condi-

tions and attack by natural enemies. In spite of the considerable number

of studies on the ecology and population dynamics of the gypsy moth and

the impact of their natural enemies, more quantitative information is

required to predict the population dynamics of this pest species and to

control its economic and ecologic impact.

Introduction

Worldwide, insect pests affect around 35 million hect-

ares of forests each year (FAO 2010). The gypsy moth,

Lymantria dispar L, is one of the pest species that can

cause considerable problems in forests ecosystems. This

foliage-feeding moth occurs naturally from Western

Europe to the Central Asia to the Far East and across

large parts of the Mediterranean (Giese and Schneider

1979; Grijpma 1989; Pogue and Schaefer 2007; Alalo-

uni 2009;Avci 2009). Itwas introduced toNewZealand

and North America (Glare et al. 1998; Pogue and

Schaefer 2007; Orozumbekov et al. 2009). In North

America, the species first appeared near Boston around

1868 and expanded its range across most of the north-

eastern states in theUnitedStates andeasternprovinces

ofCanada (Liebhold et al. 1992; Sharov et al. 2002a).

In order to understand the factors affecting the

abundance and outbreaks of this economically and

ecologically important pest, its population dynamics

have been modelled to predict population dynamics

for the development of management strategies

(Campbell 1981; Sheehan 1989; Elkinton and

Liebhold 1990; Berryman 1996; Novotny et al. 1998;

McManus and Cs�oka 2007). The patterns of insect

population dynamics are bewildering and are based

on various density-dependent and density-independent

factors (May 1974; Berryman and Stark 1985;

Berryman et al. 1987; Wallner 1987). However,

density-dependent factors have the major role in reg-

ulating populations (Berryman 1991b, 1996). Because

most insect parasitoids act in a density-dependent

manner, an understanding of their role in the dynam-

ics of insect pests is important for predicting patterns
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of population outbreaks in space and time (Royama

1977; Berryman 1996).

Data from native and invasive ranges suggest that

the natural enemies of the gypsy moth may control its

population dynamics (Turchin 1990; Berryman

1991a,b,c, 1998). It has been speculated that the

escape from native natural enemies seems to be one

reason of the invasion success and therefore higher

feeding damages in the new range (Keane and Craw-

ley 2002; Wolfe 2002; Clay 2003; Colautti et al.

2004).

Despite the economic and ecological importance of

the gypsy moth, data on its ecology and population

dynamics and the importance of its natural enemies

are widely scattered in the literature. Here, we review

the available information on the gypsy moth for

Europe in comparison with other regions of the

world. We especially focus on the comparison

between natural enemies in the native and the new

range of the species. We further complement this with

information about host plants in the different parts of

the range to account for further factors which may

influence population dynamics. The ultimate aim of

this study is to stimulate further research on factors

that trigger population and outbreak dynamics of this

ecologically and economic important pest species.

Population Dynamics and Outbreaks of the Gypsy
Moth

The gypsy moth has univoltine life cycle, which

affects its population dynamics (Montgomery and

Wallner 1988). The insect diapauses in winter as an

egg mass. Neonate larvae play a major role in the nat-

ural dispersal of the population through ballooning

(Barbosa and Capinera 1978; Pogue and Schaefer

2007). While males have five instars, females usually

have six which extends their period of exposure to

natural enemies (Grijpma 1989). The pupae require

approximately 2 weeks for development providing an

ample opportunity for parasitoids and predators to

attack (Leonard 1981).

Populations of the gypsy moth, like many other

foliage-feeding forest insects, exhibit periodic

gradations or population cycles (Varley et al. 1973;

Leonard 1974; Berryman 1996; Kendall et al. 1999).

These gradations seem to be localized at certain cen-

tres where conditions are presumed to be favourable.

For example, cycles have occurred in the same forests

of birch and alder in western Lithuania every

10 years since the 1970s (1971–1975, 1982–1983,
1993–1994; Zolubas et al. 2001). In Europe, the fol-

lowing terms are used to describe the various phases

of the cycle (see fig. 1): latency (when population is

at low levels of density), progradation (population

starts to erupt), culmination or outbreak (population

reaches high levels of density) and post-gradation or

retrogradation (population density decreases after

outbreaks) respectively (Campbell 1981; Montgomery

and Wallner 1988; Elkinton and Liebhold 1990;

fig. 1). In North America, ecologists use the terms

(innocuous or endemic, release phase, outbreak

phase and decline phase (Elkinton and Liebhold

1990). The number of the egg masses per unit ground

area or per tree in the spring before the hatch time

usually gives an indicator of the gradation phase

(Liebhold et al. 1994). The size of the egg masses and

the proportion of the old egg masses can also give

indications for the population phase (for more details,

see also Liebhold et al. 1994).

The outbreaks of gypsy moth populations seem to

be synchronized across large scales (Myers 1998;

Johnson et al. 2005). Fifteen European countries

(Austria, Czech Republic, France, Germany, Hungary,

Italy, the Netherlands, Poland, Portugal, Russia,

Spain, Romania, Serbia, Slovakia and Switzerland)

experienced outbreaks between 1990 and 1995. Even

small outbreaks occurred during this period in Eng-

land, where the climate is rather unfavourable for this

insect (Lipa and Kolk 1995; Wulf and Giraser 1996;

Narang et al. 2001; Cannon et al. 2004). However,

Fig. 1 Change in the realtive abundance of Gypsy moth in southern

Germany to illustrate the terms used to describe the various phases of

the population cycle. Open circles: relative abundance of gypsy moth to

other moth species across sites; solid line: maximum density; dotted

line: mean values (multiplied by 30). The insect needs 3 years to reach

the culmination from the beginning of progradation period. (H. Hacker,

unpublished data; see also Mueller et al. 2011).
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there are some regional differences in the time span of

two outbreaks, for example, in Slovakia and

Germany, the period between two outbreaks can

differ from 6 to 14 years (Grijpma 1989; Novotny

et al. 1998; Delb 1999; Turcani et al. 2003b; see also

fig. 1). The time between outbreaks’ events can also

vary across latitude and longitude (Weiser 1987;

McNamara 1996). A period of three to 4 years

between two outbreaks was observed in the Mediter-

ranean and Balkan regions, whereas average of seven

to 10 years was observed in Central Europe (Weiser

1987; McManus and Solter 2003). The damage caused

by the insect in the Mediterranean and Balkan is

more severe as well. The warmer and drier climate

that provides larvae with favourable conditions for

the development and survival might explain this short

and intensive outbreak cycles (Weiser 1987; Grijpma

1989; McManus and Solter 2003). Furthermore,

forest type (xeric soil, host plants) might shorten the

cycle of outbreak compared with Central Europe.

In North America, the population dynamics of the

gypsy moth were described in various terms, such as

bimodal dynamics, population cycles, second-order

lag correlations and spatial synchrony (Campbell and

Sloan 1976; Montgomery and Wallner 1988; Liebhold

1992; Liebhold et al. 2000). In early studies, the evi-

dence for cyclic fluctuations of population densities

was not convincing in North America (Elkinton and

Liebhold 1990; Liebhold and Kamata 2000). More

recent studies, however, found population cycles with

periods of 5 and 10 years between two outbreaks.

Moreover, the period between two outbreak events

differed with respect to the forest type (xeric, mesic;

Johnson et al. 2005; Haynes et al. 2009; Bjornstad

et al. 2010).

Explanations for why some foliage-feeding insects

have population cycles have been widely discussed

(Turchin 1990; Berryman 1991a,c; Murray 1999;

Liebhold and Kamata 2000; Carey 2001). Many

hypotheses have been proposed to explain this phe-

nomenon, for example, maternal effects, changes in

population genetics and the effects of host plant qual-

ity (Chitty 1967; Edelsteinkeshet and Rausher 1989;

Ginzburg and Taneyhill 1994; Liebhold and Kamata

2000; Liebhold et al. 2000). Nevertheless, the delayed

density-dependent mortality caused by natural

enemies was supposed to be the main reason for pop-

ulation cycles in gypsy moth populations (Turchin

1990; Berryman 1991a,b; Liebhold and Elkinton

1991; Liebhold and Kamata 2000). In Central Europe,

larval and pupal parasitoids can control abundance

during outbreaks and postgradations (Maier 1995;

Hoch et al. 2001; Turcani et al. 2001). Furthermore,

some tachinid parasitoids have generation times

similar to that of their host. Thereby, the progradation

phase seems to be as a result of the escape from these

enemies (Montgomery and Wallner 1988; Berryman

1991b, 1996, 1998). In North America, rates of para-

sitism by tachinids are lower than in Europe. In spite

of that, a delayed density dependence caused by intro-

duced parasitoids was proposed as a factor controlling

gypsy moth populations (Berryman 1991a,b, 1998).

No evidence was found to support this proposal

(Liebhold and Elkinton 1991; Liebhold et al. 2000).

On the other hand, predation by small mammals

appears to be the major cause of mortality in low-

density populations, which slows down the increase

of gypsy moth populations to outbreak levels

(Liebhold et al. 2000). These observations led to the

proposal that the changes in the density of generalist

predators might be a determinant of the outbreak

events (Liebhold et al. 2000; Johnson et al. 2006;

Bjornstad et al. 2010). A recent study of the gypsy

moth population cycles in North America suggested

that even in the absence of the strong environmental

changes, the behaviour of the gypsy moth population

is controlled by trophic interactions (Allstadt et al.

2013).

The Effects of Natural Enemies on Population

Dynamics

The gypsy moth encounters a diverse complex of

natural enemies (Hoch et al. 2001). However, the

effect of these enemies varies depending on the phase

of gradation (Novotny 1989; Maier 1990, 1995;

Novotny et al. 1998; Hoch et al. 2001; Turcani et al.

2001). More than 150 species of parasitoids are able to

attack the gypsy moth in Europe (109 Hymenoptera,

56 Diptera; Grijpma 1989). The parasitism rates vary

between 10% and 100% (Reardon 1981a). Despite

this pool of parasitoids, efforts to establish parasitoids

in the invasive range of the gypsy moth have been

only partially successful, and only few parasitoid

species can be considered as established (Campbell

1976; Reardon 1976; Montgomery and Wallner 1988;

Glare et al. 1998).

Egg parasitism

The gypsy moth egg parasitoids and hyperparasitoids

have been recorded from six different families of

Hymenoptera (Brown and Cameron 1982; table 1).

Anastatus japonicus (Eupelmidae) and Ooencyrtus

kuvanae (Encyrtidae) are considered the most impor-

tant egg parasitoid species in Central Europe (Grijpma
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1989). Other parasitoids including Anastatus cataloni-

cus, Anastatus bifasciatus and Anastatus japonicus are

important, for example, A. catalonicus attacked 40% of

one egg mass in Germany (Maier 1995). O. kuvanae,

Anastatus disparis and A. bifasciatus attack egg masses

in Turkey, but O. kuvanae causes higher mortalities

than the other two species (Avci 2009). The parasit-

ism rates of egg parasitoids seem to fluctuate consider-

ably in the native range of the gypsy moth. The rates

vary between 0% and 10% in Central Europe and can

reach more than 60% during an outbreak in Turkey

(Maier 1995; Bathon 1996; Hoch et al. 2001; Turcani

et al. 2001; Avci 2009). These data suggest that para-

sitism rates decrease with latitude (fig. 2a). Moreover,

there is no correlation between the density of egg

masses and parasitism rates in the native range, and

the parasitism rates seem to be higher in repeatedly

infested than in recently infested forests (Bathon

1996; Hoch et al. 2001; Turcani et al. 2001; Avci

2009).

In Asia (Korea and Japan), egg parasitoids seem to

have little importance (Brown 1984; Schaefer et al.

1988). In North America, A. disparis and especially

O. kuvanae are considered the main parasitoids of egg

masses (Hoy 1976; Reardon 1981b). Together their

parasitism rates can reach 20–40% (Brown and Cam-

eron 1982; Brown 1984; McManus and Cs�oka 2007).

Although it is considered to cause higher mortality

than A. disparis, O. kuvanae shows an extreme vari-

ability in parasitism rates as a result of the dependence

on the size of the egg masses (Brown et al. 1983;

Brown 1984).

At present, the available information allows no

clear conclusions about the influence of egg parasi-

toids on the population dynamics of the gypsy moth.

More comparative studies about the influence of egg

parasitoids in the native and new range of the insect

are needed.

Larval and pupal parasitism

More than 23 species of parasitoids and hyperparasi-

toids have been recorded in Slovakia, Austria and

Germany (table 2; Bathon 1993; Maier 1995; Hoch

et al. 2001; Eichhorn 1996; Turcani et al. 2001). The

tachinids Parasetigena silvestris and Blepharipa sp. cause

the highest mortality rates. Together these species are

the dominant tachinid parasitoids in Austria,

Germany, Lithuania, Poland and Slovakia (Maier

1990, 1995; Eichhorn 1996; Hoch et al. 2001, 2006;

Turcani et al. 2001; Zolubas et al. 2001; Sukovata and

Fuester 2005). These two species are specialized and

univoltine, which make their life span similar to their

host (Montgomery and Wallner 1988; Maier 1990).

Table 1 The main invertebrate parasitoids and predators of the gypsy moth egg mass. Information compiled from (Brown and Cameron 1982; Mason

and Ticehurst 1984; Villemant and Ramzi 1995; Hoch et al. 2001; Turcani et al. 2001, 2003b; Avci 2009; Camerini 2009)

Order Family and parasitism rates1 Species

Parasitoids Hymenoptera Encyrtidae

10–20% Central Europe and North America

Ooencyrtus kuvanae

Eupelmidae

10–20% Europe

Anastatus disparis

Anastatus bifasciatus

Anastatus japonica

Anastatus catalonicus

Scelionidae Telenomus sp.

Torymidae Torymus anastativorus

Eulophidae Atoposomoidea ogimae

Pteromalidae Dibrachys cavus

Eulophidae Pediobius sp.

Predators Hymenoptera Formicidae Aphaenogaster rudus rudus

Aphaenogaster tennesseensis

Crematogaster cerasi

Coleoptera Dermestidae

1–10% North America

10–90% North Africa

Dermestes lardarius

Trogoderma versicolor

Anthrenus vladimiri

Megatoma undata

Cryptorhopalum ruficorne

Trogossitidae Tenebroides maroccanus

Hemiptera Pentatomidae Podisus spp.

1Rough estimates of the parasitism’s rates. These rates might vary considerably due to different factors.
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While B. pratensis place the egg on the consumed foli-

age, Parasetigena silvestris place it directly on old larvae

resting in the trunk flaps (Odell and Godwin 1984;

Gould et al. 1992). Therefore, the number of host-

damaged leaf clusters and density of larvae signifi-

cantly enhance oviposition and consequently the

response for the changes in the host density (Odell

and Godwin 1979, 1984; Williams et al. 1992). Other

species of tachinids such as Exorista spp and Compsilura

spp also are common in Europe. Exorista segregate,

Compsilura concinnata and other species caused 20% of

mortality for larvae and pupae during an outbreak

period in Turkey (Avci 2009). C. concinnata also

parasitized the gypsy moth during a period of low

density in Italian willow forests (Camerini 2009).

Other important species that mainly belong to Bra-

conidae, Ichneumonidae and Chalcididae also cause

high rates of parasitism, but usually at low or increas-

ing population levels (Maier 1995; Bathon 1996;

Schopf and Hoch 1997; Hoch et al. 2001; Turcani

et al. 2001; Zolubas et al. 2001). Glyptapanteles lipari-

dis and Glyptapanteles porthetriae seem to be abundant

in latency and progradations in Europe (Schopf and

Hoch 1997; Hoch et al. 2001; McManus and Cs�oka

2007). Phobocampe sp. of the family Ichneumonidae

cause considerable parasitism rates for the larvae and

pupae in postgradations (Maier 1995; Zolubas et al.

2001). These species are oligo- or multivoltine. They

are also not specific to the gypsy moth that makes

them less respondent to the changes in population

densities and more active in low-density populations.

For example, Glyptapanteles liparidis has excellent

searching capacity, which makes this species effective

in low density and in areas where populations

increase (Schopf and Hoch 1997). However, like the

other parasitoids, many factors influence the relation-

ship between this gregarious endoparasitoid and the

larvae. Such factors include: larval age, alternative

hosts, host size and parasitoids complex (see also

Schopf 1991; Schopf and Rembold 1993; Schopf and

Steinberger 1996).

In the Asian range of the gypsy moth, tachinids,

braconids and Ichneumonids comprise most of the

parasitoid complex of the larvae and pupae (Lee et al.

2002; Lee and Pemberton 2009). Similar to Europe,

the two species of tachinids P. silvestris and Blepharipa

sp are the most effective parasitoids. On the other

hand, Phobocampe spp. (Ichneumonidae) are consid-

ered effective parasitoids sometimes even more than

tachinids (Pemberton et al. 1993; Lee and Pemberton

2009). A recent study in Central Asia showed that

tachinids (e.g. C. concinnata and Exorista larvarum) do

not play a large role in controlling high-density popu-

lations of L. dispar in orchards (Saeidi 2011). How-

ever, reports from that region are scarce. In North

America, the established parasitoids such as P. silvestris

(a) (c)

(b) (d)

Fig. 2 Relationship between latitude and par-

asitism rates of the gypsy moth. (a) Correlation

between latitude and the percentage of egg

parasitism; (b) correlation between latitude

and the rates of larval and pupal parasitism; (c)

correlation between latitude and the number

of insect species that parasitize the gypsy

moth; and (d) correlation between the number

of parasitoid species that attack the gypsy

moth and the parasitism rates. For these plots,

we collected information from different stud-

ies for different areas in the world (e.g. Ger-

many, Slovakia, Turky…). However, we have

to acknowledge that the phase of infestation,

the sampling method and forests tree compo-

sition are different between the different stud-

ies, which may strongly infleunce this analysis.

(Data sources: Bathon 1993, 1996; Pemberton

et al. 1993; Maier 1995; Eichhorn 1996; Hoch

et al. 2001; Zolubas et al. 2001; Lee et al.

2002; Turcani et al. 2003a,b; Avci 2009; Came-

rini 2009; Lee and Pemberton 2009; Saeidi

2011).
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and Blepharipa spp. and braconids, such as Cotesia mel-

anoscela, can cause considerable mortality rates (Elkin-

ton and Liebhold 1990; McManus and Cs�oka 2007).

The existing studies and reports agree that the

tachinids species play a major role in the dynamics of

the gypsy moth due to the high mortality they cause.

They can reduce the density during outbreak signifi-

cantly. Furthermore, parasitism rates on the larvae

and pupae of the gypsy moth seem to increase

towards northern latitudes (fig. 2b,c,d). Montgomery

and Wallner (1988) noticed that the response of tachi-

nid species to the change in the gypsy moth density is

delayed, which might explain the high density of

them in postgradations. During low densities of gypsy

moth, other generalist parasitoids might have the

major role to keep population from eruption

(table 3).

Predation

The populations of many phytophagous insects are

largely determined by their predators and hosts (Price

et al. 1980; Wallner 1987). Predators are often gener-

alists that feed on a wide range of prey species. There-

fore, it is difficult to determine the impact of an

individual predator on prey populations (Smith 1985;

Liebhold et al. 2000). The relative importance of pre-

dation on the population dynamics of the gypsy moth

seems to differ according to the attacked stage of the

insect (egg masses, larvae or pupae), characteristics of

predators, forests type and climate. Nevertheless, egg

Table 2 Main parasitoids of the larvae and pupae of the gypsy moth.

Information compiled from (Montgomery and Wallner 1988; Elkinton

and Liebhold 1990; Maier 1990, 1995; Pemberton et al. 1993; Eichhorn

1996; Hoch et al. 2001, 2006; Turcani et al. 2001; Lee et al. 2002; Avci

2009; Camerini 2009; Lee and Pemberton 2009)

Order Family Species

Diptera Tachinidae Parasetigena silvestris (Rob.-Desv)

Blepharipa pratensis (Meigen)

Compsilura concinnata (Meigen)

Zenillia libatrix (Panzer)

Siphona borealis (Mesner)

Blepharipa schineri (Mesnil)

Palexorista sp.

Carcelia gnava (Meigen)

Drino incospicua (Meigen)

Senometopia separata (Rondani)

Exorista lavarum (L.)

Exorista segregate (Rondani)

Aphantorhaphopsis samarensis

(Villeneuve)

Pales pavida (Meigen)

Sarcophagidae Parasarcophaga uliginosa (Kramer)

Hymenoptera Braconidae Apanteles xanthostigma (Haliday)

Glyptapanteles liparidis (Bouch�e)

Glyptapanteles porthetriae

(Muesebeck)

Cotesia melanoscela (Ratzeburg)

Meteorus pulchricornis (Wesmael)

Cotesia ocneriae (Ivanov)

Apanteles sp.

Rogas sp.

Hymenoptera Ichneumonidae Gelis areator (Panzer)

Hyposoter tricoloripes (Viereck)

Phobocampe lymantriae (Gupta)

Phobocampe unicincta (Gravenhorst)

Phobocampe disparis (Viereck)

Pimpla hypochondriaca (Ratzeburg)

Lymantrichneumon disparis (Poda)

Theronia atalantae (Poda)

Chalcididae Monodontomerus sp.

Brachymeria intermedia (Nees)

Table 3 Important parasitoids of the larvae and pupae during various

population phases in middle Europe and some parts of Asia. The values

in the table represent the range between the lowest (zero value means

that these parasitoids can be absent in some phases or regions) and the

highest possible parasitism rates. (Pemberton et al. 1993; Maier 1990,

1995; Eichhorn 1996; Schopf and Hoch 1997; Hoch et al. 2001, 2006;

Turcani et al. 2001; Zolubas et al. 2001; Lee et al. 2002; Avci 2009;

Camerini 2009; Lee and Pemberton 2009)

Population

phase Species

Span of

parasitism

rates (%)

Latency Parasetigena silvestris 0–20

Blepharipa sp. 0–17

Glyptapanteles liparidis 0–47

Glyptapanteles porthetriae 0–28

Cotesia melanoscela 0–25

Hyposoter tricoloripes 0–14

Phobocampe sp. 0–10

Progradation Parasetigena silvestris 0–77

Blepharipa sp. 0–57

Glyptapanteles liparidis 0–23

Glyptapanteles porthetriae 0–10

Hyposoter tricoloripes 0–20

Phobocampe sp. 0–21

Outbreak Parasetigena silvestris 0–95

Blepharipa sp. 0–65

Glyptapanteles liparidis 0–18

Glyptapanteles porthetriae 0–18

Cotesia melanoscela 0–59

Phobocampe sp. 0–24

Postgradation Parasetigena silvestris 0–97

Blepharipa sp. 0–95

Phobocampe sp. 0–22
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predation by invertebrates is considered to be one of

the main factors influencing the population dynamics

of the gypsy moth in North Africa (Flaval and Ville-

mant 1997). Seventeen insect species feed on egg

masses in cork oak forests in Morocco causing mortal-

ities between 25% and 90%. The climatic conditions

combined with the biological and trophic characteris-

tics of the predators enable them to attack egg masses

during the 9-month egg stage (Villemant and Ramzi

1995; Villemant and Andrei-Ruiz 1999).

Among invertebrates, both the adults and larvae of

Calosoma sycophantha (Carabidae) are the main preda-

tor of larvae and pupae of the gypsy moth (Weseloh

1993; Weseloh et al. 1995; McManus and Cs�oka

2007). In Germany, Austria and Slovakia, the abun-

dance of coleopteran predators increase with the

increase in gypsy moth populations (Bathon 1996;

Hoch et al. 2006). However, the role of beetles in reg-

ulating the populations of the gypsy moth needs more

attention (Weseloh 1985a,b; Montgomery and Wall-

ner 1988; Elkinton and Liebhold 1990).

In Europe, vertebrates probably cause more mortal-

ity than invertebrates (i.e. in Slovakia, invertebrates

caused 38% of the egg mass predation, whereas verte-

brates caused 62%; Turcani et al. 2003a). Birds seem

to be the most important predators (Reichart 1959;

Higashiura 1989; Turcani et al. 2001, 2003a). For

example, 77% of the egg masses are damaged in Slo-

vakia (Turcani et al. 2001). In Japan, bird predation

on egg masses varied between 4% and 70% and was

density independent (Higashiura 1989).

In North America, invertebrate predators of egg

masses seem to be not important as a mortality factor.

Dermestids (Cryptorhopalum ruficorne) can attack 3–
10% of the egg masses (Mason and Ticehurst 1984).

Predation by vertebrate seems to be more effective,

for example, predation rates of egg masses by birds are

between 65% and 89% (Cooper and Smith 1995;

McManus and Cs�oka 2007).

Small mammals seem to have an important impact

on populations of the gypsy moth. Mice cause high

mortalities, for example, 98% of deployed gypsy moth

pupae were destroyed within 72 h in Ukraine (McM-

anus and Cs�oka 2007). Mice also caused more than

45% mortality in an artificial population of gypsy

moth pupae in Austria (Gschwantner et al. 2002).

The predation by small mammals plays also an impor-

tant role in gypsy moth dynamics in natural oak for-

ests in Asia (Liebhold et al. 1998). Nevertheless, the

abundance of small mammals and predation rates are

affected by forest types and elevation (Liebhold et al.

1998, 2005). In general, data from Europe and Asia

suggest that predation by small mammals is able to

keep gypsy moth populations at low density levels

(Liebhold et al. 1998; Gschwantner et al. 2002).

Predation by small mammals is considered one of

the most important factors affecting the population

dynamics of the gypsy moth in North America (Camp-

bell 1975; Campbell and Sloan 1977; Elkinton et al.

1989; Grushecky et al. 1998; Hastings et al. 2002). It

seems that mammals do not regulate the populations

in a density-dependent fashion. The predation rate is

mostly determined by the variation in predator densi-

ties, which is closely linked to the production of acorns

(the major food for predators in winter) and not by

the gypsy moth densities (Elkinton et al. 1989, 1996;

Jones et al. 1998; Liebhold et al. 2000). Furthermore,

the distribution and abundance of small mammals are

determined by forest types and elevation among other

factors (Yahner and Smith 1991). If small mammal

predators are abundant, they are able to control the

populations of the gypsy moth at low densities, but

this is not sufficient to induce population collapse dur-

ing outbreaks or to control increasing populations of

the insect (Elkinton et al. 1996; Liebhold et al. 2000).

Thus, density fluctuations of small mammal predators

might be a probable factor of the synchronization in

gypsy moth populations. Overall, the available infor-

mation suggests that the density of small mammal pre-

dators along with the proportion of susceptible tree

species is an important factor for the gypsy moth pop-

ulation cycles (Sharov and Colbert 1996).

Pathogens

Entomopathogenic micro-organisms have a consider-

able impact on Eurasian populations of the gypsy

moth (Weiser 1987, 1998; Novotny 1989; table 4). In

Central Europe, the mortality caused by pathogens is

higher than the mortality caused by parasitoids

(Bathon 1993; Hoch et al. 2001; Turcani et al. 2001).

Probably the often reported unknown mortality fac-

tors are due to pathogens. For example, the average

mortality caused by unknown factors in a 6-year

study in Slovakia was 24%, which was larger than

any other factor (Turcani et al. 2001). Microsporidia

and pathogens such as fungi, bacteria and nematodes

also have an effect on European populations of the

gypsy moth (Weiser 1998; Maddox et al. 1999; Solter

et al. 2009). In the Asian native range of the gypsy

moth, fungi may cause epizootics in L. dispar popula-

tions. Mixed infections of E. maimaiga and Paecilomyces

canadensis were found in 20% of the dead larvae in

Japan (Aoki 1974; Hajek 1999). In North America,

the nuclear polyhedrosis virus (NPV) is the most

important factor causing the collapse of gypsy moth
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populations (McManus and Cs�oka 2007). E. maimaiga

also caused a dramatic epizootic in larval gypsy moth

populations throughout many areas of the northeast-

ern United State (Andreadis and Weseloh 1990; Hajek

et al. 1990).

The significance of pathogens depends on the

density of the gypsy moth. During outbreaks, NPV

infects stressed larvae causing high mortality (Camp-

bell and Podgwait 1971; Novotny 1989). Therefore,

high densities of larvae, non-preferred hosts and a

moist and cold climate are optimal conditions for the

virus (Wallis 1957; Campbell and Podgwait 1971;

Murray et al. 1989;Woods et al. 1991).Moreover,most

NPV infections start from a few egg masses. Thereafter,

the contaminated environment is the major factor for

transgenerational transmission (Doane 1970; Woods

and Elkinton 1987;Murray and Elkinton 1989).

NPV is an important mortality factor of the gypsy

moth in the native and invasive ranges. It causes the

collapse of the population during the outbreaks, and

its effects decrease in low populations. No evidence

was found to support the hypothesis that the interac-

tion between the larva and the virus is the reason for

population outbreaks (Vezina and Peterman 1985;

Bowers et al. 1993).

The Effects of Other Factors

Host plants

More than 300 tree species of different families serve

as host plants of the gypsy moth (Grijpma 1989;

Liebhold et al. 1995). Many of the tree species

belonging to families of Fagaceae, Salicaceae, Betula-

ceae and Rosasceae are the hosts throughout the

native and invasive ranges (Lechowicz and Mauffette

1986; Pogue and Schaefer 2007). The preference of

tree species by larvae varies considerably owing to the

regional and local composition of the vegetation

(Lechowicz and Jobin 1983; Mauffette et al. 1983;

Mauffette and Lechowicz 1984). In Central Europe,

the primary hosts of the gypsy moth are Quercus pet-

raea, Quercus cerris and Quercus robur (Fagaceae)

(Bogenschutz et al. 1989; Grijpma 1989; Twery

1990). In the Balkans and the Mediterranean areas

(Spain, Portugal, Sardinia and the southern regions of

France), other species of this genus, that is, Quercus

suber, Quercus pubescens and Quercus ilex are the pri-

mary hosts (Serr~ao 2002; McManus and Cs�oka 2007).

Near the northern limits of its range in Lithuania,

birch (Betula spp.) and alder (Alnus spp.) are the pri-

mary hosts (Zolubas et al. 2001). Salix alba is attacked

in the southern range margins (Italy; Camerini 2009).

There further seems to be a current trend towards an

expansion of the host range. Pinus brutia and Cedrus li-

bani have recently been reported as host plants in Tur-

key (Avci 2009). Moreover, the gypsy moth at high

densities attacks fruit trees, for example, apple, pear

and stone fruit trees in Germany (Montgomery and

Wallner 1988; Vogt and Dickler 1993; Orozumbekov

et al. 2004; Alalouni 2009; Saeidi 2011).

In North America, a wide range of tree species are

hosts of the gypsy moth (Mauffette et al. 1983; Lech-

owicz and Mauffette 1986; Liebhold et al. 1995).

Many hypotheses have been proposed to explain the

host preferences of the gypsy moth in North America,

for example, phylogeny (host trees in North America

should be closely related to those in Europe), plant

traits, dynamics of the gypsy moth and climatic condi-

tions (Lechowicz and Jobin 1983; Montgomery 1990;

Liebhold et al. 1995). In spite of that, it was suggested

that the leaf quality and the timing of eclosion relative

to leaf emergence on different hosts appear more

likely to determine the host preferences (Lechowicz

and Mauffette 1986).

Forest susceptibility and host trees are important

factors influencing the dynamics of the gypsy moth

(Barbosa and Greenblatt 1979). Susceptible species

provide an easily digestible and balanced diet for the

gypsy moth during the different stages of the larvae

(Twery 1990). Thereby, outbreaks occur more

frequently on xeric sites having many susceptible host

species. Such sites help to increase the insect develop-

ment and to avoid natural enemies (Campbell and

Sloan 1977; Montgomery 1990). For example, the

Table 4 The most important pathogens of gypsy moth larvae (Hajek

et al. 1990; Novotny et al. 1998; Weiser 1998; Hoch et al. 2001; McM-

anus and Solter 2003; Turcani et al. 2003a,b; Pilarska et al. 2006; Saeidi

2011)

Pathogen Type of organism

Geographical

area

Nuclear polyhydrosis virus (NPV) Virus North America,

Europe, Asia

Bacillus thuringiensis var. kurstaki Bacterium North America,

Europe, Asia

Entomophaga maimaiga

(Humber, Shimazu and Soper)

Fungus North America,

Eastern Europe

Entomophthora aulicae (Reich) Fungus Europe

Beauveria bassiana Fungus Central Asia

Nosema muscularis (Weiser) Microsporidium Europe

Nosema lymantriae

(David and Weiser)

Microsporidium Europe

Thelohania similis (Weiser) Microsporidium Europe

Thelohania disparis (Timofejeva) Microsporidium Europe

Plistophora schubergi (Zw€olfer) Microsporidium Europe
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estimated time span between two outbreaks in xeric

forests with susceptible hosts (i.e. oak and pine) is

four to 5 years, while it is nine to 10 years in mesic

forests with less-susceptible hosts (i.e. mix of oak,

maple, beech, birch; Johnson et al. 2006; Haynes

et al. 2009; Bjornstad et al. 2010). On the other hand,

the change in the chemistry and the nutritional qual-

ity of foliage during the defoliation lead to the decline

of the population (Wallner and Walton 1979; Schultz

and Baldwin 1982; Rossiter 1987). Additionally,

spatial variations, feeding and synchrony of the egg

hatch with leaf emergence of host plants are interac-

tive factors contributing to the change of population

densities (Leonard 1974; Valentine and Houston

1984; Montgomery and Wallner 1988; Hunter and

Elkinton 2000).

The phenology of host plants and herbivores is

mainly influenced by environmental factors. The vari-

ations in response to temperature and photoperiod

determine the synchrony of host and herbivores (Van

Asch and Visser 2007). Insects also need to adapt with

spatial and temporal variations to achieve synchrony

with the host plants (see also Scheiner 1993; Van

Dongen et al. 1997; Kawecki and Ebert 2004; Mopper

2005). Hunter (1993) suggested that the phenological

synchrony has little effect on the fluctuation in the

populations of the gypsy moth. The net effects of phe-

nology on the growth of the gypsy moth population

largely depend on natural-enemy effects (Hunter and

Elkinton 2000). In spite of the limited evidence, the

synchrony of hosts and herbivores is speculated to

influence the population dynamics of univoltine

insects (see Watt and Woiwod 1999; Forkner et al.

2008).

Weather

Weather, especially temperature and precipitation

affect directly and indirectly the population dynamics

of the gypsy moth and the synchronization of the out-

breaks (Leonard 1974; Montgomery and Wallner

1988; Elkinton and Liebhold 1990; Van Asch and

Visser 2007). Temperature was frequently reported to

influence the hatch of egg masses, larval and pupal

development and females’ fecundity. Leonard (1974)

reported detailed information about the influence of

winter and spring temperature on the hatch time of

egg masses. Winter-survived eggs and the phenology

of egg hatch in spring depend on temperature (Andre-

sen et al. 2001). Temperature can also affect the pop-

ulation size of the gypsy moth’ larvae and pupae

considerably, for example, high temperatures help

larvae and pupae to develop faster, thereby escaping

from some natural enemies (Leonard 1974; Mont-

gomery and Wallner 1988). Precipitation reduces the

ability of neonate larvae to spread and could increase

spread of diseases between gypsy moth larvae

(Leonard 1974). Precipitation can also be the respon-

sible factor for the synchronization of the gypsy moth

populations over large areas directly or indirectly (see

Haynes et al. 2013).

Favourable weather (dry-warm) seems to support

outbreaks (Delb 1999). However, there is also a lack

of the short- and long-term studies regarding the

potential role of weather for the population dynamics

of the gypsy moth. We speculate that much of the

variability in population densities of the gypsy moth

may be attributed to interacting effects of weather

conditions and attack by natural enemies.

Ecological and Economic Impact of the Gypsy

Moth

The ecological effects of the gypsy moth vary depend-

ing on the defoliation levels. These levels are usually

related to the susceptibility of the host species, the

amount of foliage removed and the number of

consecutive episodes of defoliation (Muzika and

Gottschalk 1995; USDA 1995; Davidson et al. 2001).

Defoliation by the gypsy moth may cause dramatic

changes in tree species composition, which influences

also wildlife species through changes in habitat char-

acteristics (Twery 1990; Muzika and Gottschalk 1995;

Webb et al. 1995). For example, North American

woodpeckers may take advantages of the habitat

changes caused by defoliation of the gypsy moth

(Koenig et al. 2011). Furthermore, intense defoliation

can indirectly affect birds, small mammals and even

fish (Witter et al. 1992; Thurber et al. 1994; USDA

2012). One of the effects on birds is the increase in

the abundance of non-game bird species due to the

change in habitat characteristics (increased habitat

diversity, habitat suitability and food supply; Whit-

more and Greer 1991). The defoliation may also

change the biological diversity as well as food web

dynamics (Muzika and Gottschalk 1995). Many

wildlife species depend on the host trees as a food sup-

ply. The loss of this food supply owing to tree mortal-

ity after defoliation reduces the capacity of an area to

support some species, that is, the loss of acorns for

grey squirrels (Gorman and Roth 1989; Twery 1990).

On the other hand, defoliation and frass decomposi-

tion can influence the soil nutrient dynamics

(Hollinger 1986; Chapman et al. 2003). Recent study

suggested increasing soil total C, total N and the soil

NH4 pool by frass deposition. Additionally, herbivory
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increases soil respiration and decreased total soil N

relative to ‘undamaged’ controls independent of frass

deposition (see Frost and Hunter 2004). However,

there are inconsistent results about the influence of

frass deposition on soil dynamics (see e.g. Lightfoot

and Whitford 1990; Lovett and Ruesink 1995;

Reynolds et al. 2000; Reynolds and Hunter 2001).

Forest trees have been categorized according to

their susceptibility to defoliation. Generally, a single

year of defoliation is sufficient for killing a conifer

attacked by gypsy moth, while two or three successive

years of defoliation are usually needed for the death

of deciduous trees (Johnson and Lyon 1991). A con-

siderable number of trees die due to the attack by

other organisms after defoliation (Davidson et al.

1999, 2001). The heavy attacks of Agrilus biguttatus

(Col., Buprestidae) on oak in France was recorded

after an exceptional outbreak of the gypsy moth in

the previous years (Landmann 1996; Moraal and

Hilszczanski 2000). In this context, different biotic

and abiotic stresses may increase the susceptibility to

defoliation by gypsy moths in European forests, espe-

cially in oak forests (Gottschalk and Wargo 1996;

F€uhrer 1998; Moraal and Hilszczanski 2000).

Clearly, the current management strategies have

impacts on native biota (Sample et al. 1996). Products

of Bacillus thuringiensis var. kurstaki (BTK) probably

affect different species of moths more than the

outbreak moth species (Schweitzer 2004). Further-

more, some chemicals, such as diflubenzuron (or

Dimilin, an insect growth regulator) persist in the

environment for long time thereby affecting the forest

environment and species (Sundaram et al. 1991;

Lischke 1993; USDA 1995). Reports on human health

and ecological assessment of the various products are

also available (e.g. Forster et al. 1993; Gericke and

Schellschmidt 1993; USDA 1995).

Published information on the economic impacts of

the gypsy moth in its native range is limited. Some

data alluding to the economic impact of the gypsy

moth indirectly point to the high cost of control mea-

sures. Infested stands in Slovakia covering 18 000–
22 000 ha during 1992–1994 were treated with BTK

(Turcani et al. 2001b, 2003a,b). In Germany in 1994,

around 5200 ha were treated with diflubenzuron,

and around 2000 ha were treated with BTK (Seeman

1999). The gypsy moth seems to have also consider-

able economic impact on orchards. Since the 1980s,

the annual defoliation of pistachio, walnut and apple

orchards ranged between 17 000 and 52 000 ha in

Kyrgyzstan (Orozumbekov et al. 2004). The gypsy

moth caused considerable damage to poplar planta-

tions, oak forests (1 471 839 ha) and evergreen

ecosystems (3 153 882 ha) in Greece, and it was con-

trolled using chemicals and bio-insecticides (Avtzis

2001). Nevertheless, it is important to mention that

no control measures have been used in some areas of

Europe, for example, in Austria since the early 1960s

(Hoch et al. 2001) and in some infested stands in

Germany (Seeman 1999).

In North America, more than 34 million ha have

been defoliated by the gypsy moth since 1924

(McManus 2007). The estimated timber loss in 1981

in Pennsylvania alone had a value of 72 million dol-

lars (Montgomery and Wallner 1988). Huge budgets

were released to develop strategies to control this pest

and to limit its spread, such as the ‘Slow the spread’

programme, one of the largest programmes in the

USA (Sharov et al. 2002a,b). The recently estimated

costs of loss caused by the gypsy moth and other

foliage feeders in the USA and the government expen-

ditures to manage these pests range between 4 and 120

million dollars annually (see Aukema et al. 2011).

Many studies predict an increase in the potential

economic and ecological damage caused by forest

pests in the future due to climate change, which may

increase the likelihood of pest establishment in new

locations as well as the impacts of both native and

introduced pests (Logan et al. 2003; Regniere et al.

2009; FAO 2010). This prediction includes the gypsy

moth. A modelling study (Vanhanen et al. 2007)

indicated a shift in the distribution boundaries of the

gypsy moth and the nun moth (Lymantria monacha) in

Central Europe; in this model, the northern boundary

will shift ca. 500–700 km to the north, and the

southern boundary will shift ca. 100–900 km to the

north. This shift threatens forests in the new areas

(Vanhanen et al. 2007).

Conclusions

The damage and defoliation caused by the gypsy moth

in its native range are less severe than that caused in

its new ranges. This can be interpreted as a result of

the release from natural enemies in the new ranges.

Natural enemies are considered to be the dominant

mortality factor in insect populations (Cornell et al.

1998).They could cause local extinction of native

populations if these populations are vulnerable

(Hochberg and Ives 1999). Pathogens, especially NPV

in periods of outbreaks cause the highest mortality

rates in all populations of the gypsy moth (Novotny

1989; Woods et al. 1991). Parasitoids can also cause

high mortality rates. Tachinids are thereby the major

parasitoids with a potential influence on the popula-

tion dynamics of gypsy moth. While Tachinids
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contribute to the collapse of the population of the

gypsy moth during outbreaks, parasitoids of other

families contribute to regulating the populations at

low densities. Parasitoids of the egg masses do not

seem to cause sufficient mortality levels that influence

the population of the insect. Predators cause consider-

able mortality rates, with birds and small mammals

causing higher mortalities than invertebrates, at least

in North America. Studies evaluating the other biotic

and abiotic factors influencing the dynamics of gypsy

moth are rare and especially with respect to the

phenologies of host plants and the insect.

In spite of several decades of research on the ecol-

ogy, population dynamics and the importance of nat-

ural enemies, we have little quantitative information

to predict the population dynamics of this important

forest pest species and to control its impact. More

research about the interaction between environmen-

tal factors, host plants and parasitoids complex would

help to understand more about the reasons of this

insect eruption and the synchrony over large areas in

Europe and North America.
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